i
A - Technical Report 3
SMU-EE-TR-82 - 1
Contract Number NOOO14-79-C-0494 :
January 4, 1982 /.
S ‘-EM
a gz
: i
=
< i
A Study of Texture
Classification Using Spectral Features# 1
4
/ :
. {1l
// A 4
3
Acoession For o HBYCh
 ATIS oRrAMl | X « H. en
,rfgnc TAB 0O Gia~Kinh Young
/ Unannounced 0O Department of Electrical Engineering
t>2: i Justificatlon————Southeastern Massachusetts University «
) | . North Dartmouth, Massachusetts 02747 DTIC ¥
\ By . ;
€O | Dpistributien/ . f
,/ Availability Codes ELECTE
par AVRIL Dud/or ;
E-‘: Dist Special JAN7 1982 .. 3
= *The support of the Statistics and Probability Program of i
the Office of Naval Research on this work is gratefully
acknowledged,

DISTRIBUTION STATEMENT A 8 2 O ]. C 7 03 O

Approved ¢ 1k 1 : y
Distibution Ualimited #Iy972 A

o s e s

: i
e
R R TSN SO o




\ — »

il i i
e + R T

i R
R

. o

A Study of Texture Classification Using Spectral Features

I. Introduction

To identify objects or region of interest in an image, textural
properties are very important because of their useful information
about the structural arrangement of surfaces and their relationship to
the surrounding environment. Various methods of textural feature
selection have been proposed (see e.g. [1][2] ). Also the spectral
information has been geherally recognized as an effective feature on
the texture discrimination and segmentation. A busy picture has
relatively high power at high spatial frequencies as compared to a
smooth picture, while the directional biases in the picture should
give rise to the directional biases in the spectrum. And any
periodic properties should produce very high values in the power
spectrum,

Weszka et al. [3] have used this kind of feature for the
classification of various terrains. Because of the method used to
calculate the power spectrum (taking a two-dimensional Fourior Trans-
form) cannot lead to a satisfactory result for a finite sample two-
dimensional data (image), the classification is not as good as using
other methods. Recent.y, Lim and Malik [4] have proposed an efficient
iterative algorithm for the two-dimensional maximum entropy power
spectrum estimation which can obtain good resolution and sufficient
accuracy for the finite sample two-dimensional data. A study of
the spectral estimation of texture image has been proved to be
successful [5] by using a minicomputer. In this report, we use this
method for the calculation of spectral features of texture image.

In section II, we will briefly discuss the two-dimensional maximum entropy
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power spectrum estimation. The method of selection of features will
be described in section III while section IV provides some experi-
mental results of the textural classification.
1I. Two-Dimensional Maximum Entropy Power Spectrum Estimation

The basic concept of the maximum entropy method (MEM) of spectral
estimation is to extrapolate the autocorrelation function of a random
process by maximizing the entropy H of the corresponding probability
density function n m

H = log B (wy, wy) dw,dw, (1)
Wl W,z .

where gx(wl’ w2) is the power spectrum estimate of the random process

x(nl. n2). The characteristics of this method are equivalent to the

autoregressive signal medeling and the power spectrum is calculated

Y B ) L (2)
Woy Wo) = T ! "
XA T2T T S Ay, n,) @M e YA ,
(n,.m)€A
where 7\(n1, n2) is the autocorrelation whose power spectrum is
1 and A is a set of points (nl, nz) where the autocorrela-

P TW ' W )
X717 tion is known.

Since the filter coefficients cannot be obtained directly by
solving the normal equation as in the one-dimensional case, Lim and
Malik developed a new iterative algorithm, using adaptive filtering
concepts. The basic idea of this algorithm is on the notion that
the given correlation point in region A is consistent and the
corresponding coefficient should be zero outside region A and proceed
this iteration repeatedly until an optimal solution is obtained.

That is, for a given autocorrelation Rx(nl' nz) for (nl, nz) € A,

LA A .
determine Px(wl' wz) such that Px(wl’ wz) satisfy (2) and
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Ry(nyy ny) = F [Px(wl, wz)] for (nyy ny) € A
A simple flowchart is shown in Fig. 1. We begin with wome

initial estimate of 7\(n1. nz). obtain the corresponding correlation

function, correct the resulting correlation function for (nl.nz) e A

with the known Rx(nl. n2). obtain the corresponding ,)\(nl, nz) from
the correct correlation function, and then replace the resulting

A (ngy ny) with zero for (ny» ny) § A. This completes one iteration
and the corrected )\(nl, n,) is a new estimate of ) (ny, ny).

In Lim and Malik's paper, the calculation of the autcorrelation
Rx(nl’ nz) is limited to the closed analytic form especially for the
two-dimensional sinusoids. A generalization of this method and the
application to a two-dimensional real data have been discussed by
Chen and Young {5]. To show that this algorithm can fully predict
the correct spectrum, an example is to test a three-frequency case.

Given a two-dimensional sinusoid whose frequency components are:.

wil/ZW w12/2"
1) 0.3750 0.1250
2) 0.4375 0,2500
3) 0.0625 0.3750

We can verify from the result shown in Fig. 2 that this algorithm
provides a very good spectral estimation and resolution fcr the
multifrequency signal.
III. Feature Selection and Classification Method

We use two features to classify the texture images. It is
generally recognized that a coarse texture will have a high value

of power spectrum near the origin while in a fine texture, the
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value will be more spread out. Thus, if one wishes to analyze

texture coarseness, a set of features that should be useful are

the averages of the power-spectrum values taken over a ring-shaped

region centered at the origin. 1In this report, we consider only

the first quadranglof the power spectrum, then

A= [*F (x, 0) ao | (3)

X
Q
for various values of r, the ring radius.

For the discrete case, this can be written as (for rings

between radius ry and rz)a
A
= 2 - Y : m
7'57)'; R egisry) fl(x,y) L O 2R RY (%)

Similarly, it is well xnown also that the angular distribution

of power spectrum is sensitive to the directionality of the texture

in frequency w. A texture with many edges or lines in a given

direction € will have high values of power spectrum around the

perpendicular of 9+g ; while in a nondirectional texture the

spectrum should also be nondirectional. Thus a good set of features

for analyzing the texture directionality should be the averages of

the power-gpectrum values taken over wedge-shaped regions centered

at the origin, i.e.

A
9% = ﬁlijx(r,e) dr ) (5)

for the various values of ©, the wedge slope.

For the discrete case, this is(fhe wedge between 8, and 8, )
given by A
P = b P, (X, ¥) (6)
1va 9) < tas ~I-lz <9L

Q<Y «n-|
The features calculated by (4) and (6) are sensitive to size and

orientation respectively, but not to both. In order tc obtain the

comparable feature sets, we obtain a sets of equalized features by

e

tashebvisithi b Satain.
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taking the average over the intersection area of rings and wedges.
These equalized features are also studied in section IV.

After the calculation of features, we use the Fisher discri-
minant technique as the means for classification [6]. For a two-
class problem, a given get of features measured x, we decide it
belongs to class 1 (subset Hl)' if

N wi(x = m) > 0 (7)
Otherwise we decide class 2 (subset H,) and,
WEon S, (m - m) (8)

where « + a scalar

nt number of semples

(384

" 3 = N~ - - t
S,t the pooled sample scatter matrix . 7 (x mi)(x mi)
E1 %,

—

m;+ mean = -'!’4_'.1%1.- X, i=1,2 .
When we have more than two classes, we can use a voting scheme to
classify a given measurement x. For each pair of classes Hi’ Hj;
we project x on appropriate line and classify it as described above.
This gives us k(k-1)/2 different classifications, where kK is the
number of classes of x. Finally, we assign x to the class that
received the most votes.

IV. Experimental Results

Because of the computational requirements of the method and

the limited memory capacity of the PDP 11/45, all test samples are 3
stored in nur DEC 20 system and sent through a high speed communica-
tion line to the PDP 11/45 for the spectrum computation. The test

samples are the texture images taken from the USC data base. To
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verify the aensitivity both in coarseness and directionality, we
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gelect some textures that contaln such informations. The test

samples contain six classes of texture (each one has four samples)

and are shown in Fig. 3. Each data is a 32x32 array of gray level
0 - 255, These pictures reappear but are two times larger in

Fig. 4(a) - Fig. 9(a). Fig. 4(b) - Fig. 9(b) are the corresponding

estimated\power-spectrum display of the upper left data in each

class., We can see that those spectra are different either in

o e b bl dhad S oD e

radial or angular distribution.
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The feature sets we used are:
ring: ¢}”1 for (ryy rp)= (1,3), (3,6), (6,12), (12,24), (24,48)
wedge: 9%91 for (8,, 6,)=(0,15), (15,30), (30,45), (45,6),
(60,75), (75,90)

The maximum ring radius used is 48 since it already covers most

ottt ek v 1ot aan s S vt 1 b

part of a 64x64 array power spectrum,
A combination feature of ring and wedge has been tested for
30 pairs of feature values., Table I shows part of features which

did higher than 19 out of 24 correct, i.e. more than 80% correct.

b Mt

Table II shows the best performing pairs using the same kind of
features (ring and ring, wedge and wedge): ‘there are 6 out of 25
pairs which classified correctly higher than 75%. Other pairs'

results are concentrated near 12-17, i.e., more than 50% correct

recognition, For the pairs that contain the wedge near the edges,
the results are very good since the test samples give some

directional information. Also for the rings a little farther from

the origin, the results are better since it shows a large difference

in the spectrum value there.




i
s
l.
?

_—

Equalized featureé are also tested: we used five rings inter-
sected with three wedges ( ring:i(1,3),(3,6),(6,12),(12,24), (24,48)
and wedge:(0,30),(30,60),(60,90)). 105 pairs of features have been
tested., Table III shows the hest performing pairs of which the
best score, 23 out of 24, is 95% correct., From the results, we can
see that the ring feature (24,48) gives very useful classification
informatien indicating that there exists a large textural variation
in that region as the texture coarseness plays an important role in
the pair. Fig. 10 is a histogram of scores obtained of all the 105
pairs of test features and indicates a high probability for the
overall classification accuracy of the spectral features,

V. Discussion

In this report, we have observed that equalized features did
better than unequalized ones for this set of test camples. It
is verified that both the coarseness and the directionality are '
important factors in texture discrimination. For the consideration
of practical use in automatic classification, various kinds of
textures must be tested and coupared with other methods using the
non-spectral features. Another important factor which may influence
the results is that if we increase the autocorrelation function and
the discrete Fourier transform length while estimating the power
spectrum, the accuracy and the resolution will be better. But
there is a tradeoff between the accuracy and the computaticnal
time. In this report, these parameters (i.e. autocorrelation

function: 7x7, discrete Fourier transform length:32) are chosen
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for the real-time processing purpose. Also the locations of the
main and second components of frequencies can serve as another

important features because they vary among different textures.
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Fig. 2(a) The contour map u. the
estimated power spectrum (4dB=5)
Noter 4 dB is the dB valuc
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Fig. 2(b) Three-dimensional
display of the estimated power
spectrum,
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Fig. 3 The original test texture
sagples with 6 classes, 24 data,
and each data format of 32x32.
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Fig. «(a) Test samples of

1 Fig. 4(b) The estimated power
class 1. spectrum(for the upper left
one of (a)).

Fig. 5(b) The estimated power
spectrum(for the upper left
one of (a)).
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Fig. 6(a) Test samples of
class 3.

Fig. ?(a) Test samples of
class 4.
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6(5) The estimaﬁéd power
(for the upper left one

Fig. 7(b) The estimated power
spectrum(for the upper left one
of (a)).
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" Fig. 8(a) Test samples
of class 5.
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; Fig. 9(a) Test samples
of class 6

" Fig. 8(b) The estimated
power spectrum for the
upper left one of (a).

Fig, 9(b) The estimated
power sgpectrum for the
upper left one of (a).
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Features Number correctly él;;sified
B TR Awéémem.mm”‘m.mm"_ : R
(24,48) (0,15) 22
(1,3) (0,15) 21
(3,6) (0,15) 20
(1,3) (45,60) 19
(12,24) (0,15) 19
(3,6) (30,45) 19
(3,6) (75,90) 19

Table I: Best performing pairs using the combination feature

of ring and wedge for those with more than 80% correct

classification.
(w”" R
Features Number correctly classified
" ng ming
(6,12) (24,48) 20
(6,12) (12,24) 19
Wedge Wedge
(30,45) (75,90) 20
(15,30) (60,75) 18
(30,45) (60,75) 18
(45,60) (60,75) 18

\

Table II: Best performing pairs using same kind of features,
for those with more than 75% correct classification.

e
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Number correctly

Features classified
Ring [ Wedge Ring N Wedge
(3,6) (0,30) (24,48) (0,30) 23
(12,24) (60,90) (2u,48) (0,30) 23
(24,48) (0,30) (24,48) (30,60) 22
(1,3) (0,30) (24,48) (0,30) 22
(1,3) (30,60) (24,48) (0,30) 22 |
(1,3) (60,90) (24,48) (0,30) 22
(3,6) (30,60) (24,48) (0,30) 21 *
(3:6) (60,90) (24,48)  (0,30) 21
(6,12) (0,30) (24,48)  (0,30) 21
(12,24) (30,60) (24,48) (0,30) 21
(12,24) (0,30) (12,24) (60,90) 20
(1,3) (30,60) (6,12)  (0,30) 20
(1,3) (60,90) (6,17) (0,30) 20
(12,24) (0,30) (24,48) (0,30) 20
(1,3) (0,30) (6,12)  (.,30) 19
(3,6) (0,30) (6,12) (0,30) 19
(3,6) (30,60) (6,12) (0,30) 19
(6,12) (0,30) (12,24) (60,90) 19
Table III: Best performing pairs using equalized features

pf—mw

for those with more than 80% correct classification.
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Fig., 10 Histogram of scores obtained using pairs
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